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Universal Prediction of Individual Sequences 
Meir Feder, Member, IEEE, Neri Merhav, Member, IEEE, and 

Michael Gutman, Member, ZEEE 

Abstruct-The problem of predicting the next outcome of an 
individual binary sequence using finite memory, is considered. 
The finite-state predictability of an infinite sequence is defined as 
the minimum fraction of prediction errors that can be made by 
any finite-state (FS) predictor. It is proved that this FS pre- 
dictability can be attained by universal sequential prediction 
schemes. Specifically, an efficient prediction procedure based on 
the incremental parsing procedure of the Lempel-Ziv data com- 
pression algorithm is shown to achieve asymptotically the FS 
predictability. Finally, some relations between compressibility 
and predictability are pointed out, and the predictability is 
proposed as an additional measure of the complexity of a 
sequence. 

Index Terms-Predictability, compressibility, complexity, fi- 
nite-state machines, Lempel- Ziv algorithm. 

I. INTRODUCTION 

MAGINE an observer receiving sequentially an arbitrary I deterministic binary sequence xl, x2, * * , and wishing to 
predict at time t the next bit x,,, based on the past 
x,, x2, * , x,. While only a limited amount of information 
from the past can be memorized by the observer, it is desired 
to keep the relative frequency of prediction errors as small as 
possible in the long run. 

It might seem surprising, at first glance, that the past can 
be useful in predicting the future because when a sequence is 
arbitrary, the future is not necessarily related to the past. 
Nonetheless, it turns out that sequential (randomized) predic- 
tion schemes exist that utilize the past, whenever helpful in 
predicting the future, as well as any finite-state (FS) predic- 
tor. A similar observation has been made in data compression 
[l] and gambling [2]. However, while in these problems a 
conditional probability of the next outcome is estimated, here 
a decision is to be made for the value of this outcome, and 
thus it cannot be deduced as a special case of either of these 
problems. 

Sequential prediction of binary sequences has been consid- 
ered in [3]-[5], where it was shown that a universal predic- 
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tor, performing as well as the best fixed (or single-state) 
predictor, can be obtained using the theory of compound 
sequential Bayes decision rules developed in [6] and [7] and 
the approachability-excludability theory [8], [9]. In [ 5 ] ,  this 
predictor is extended to achieve the performance of the best 
Markov predictor, i.e., an FS predictor whose state is deter- 
mined by a finite number (order) of successive preceding 
outcomes. Our work extends these results by proving the 
existence and showing the structure of universal predictors 
that perform as well as any FS predictor and by providing a 
further understanding of the sequential prediction problem. 

Analogously to the FS compressibility defined in [l], or 
the FS complexity defined in [2], we define the FS pre- 
dictability of an infinite individual sequence as the minimum 
asymptotic fraction of errors that can be made by any FS 
predictor. This quantity takes on values between zero and a 
half, where zero corresponds to perfect predictability and a 
half corresponds to total unpredictability . While the definition 
of FS predictability enables a different optimal FS predictor 
for each sequence, we demonstrate universal predictors, 
independent of the particular sequence, that always attain the 
FS predictability. 

This goal is accomplished in several steps. In one of these 
steps, an auxiliary result which might be interesting in its 
own right is derived. It states that the FS predictability can be 
always nearly attained by a Markov predictor. Furthermore, 
if the Markov order grows with time at an appropriate rate, 
then the exact value of the FS predictability is attained 
asymptotically. In particular, a prediction scheme, based on 
the Lempel-Ziv (LZ) parsing algorithm, can be viewed as 
such a Markov predictor with a time-varying order and hence 
attaining the FS predictability. 

The techniques and results presented in this paper are not 
unique to the prediction problem, and they can be extended to 
more general sequential decision problems [lo]. In particu- 
lar, when these techniques are applied to the data compres- 
sion problem, the LZ algorithm can be viewed as a universal 
Markov encoder of growing order which can be analyzed 
accordingly. This observation may add insight to why the LZ 
data compression method works well. 

Finally, we introduce the notion of predictability as a 
reasonable measure of complexity of a sequence. It is demon- 
strated that the predictability of a sequence is not uniquely 
determined by its compressibility. Nevertheless, upper and 
lower bounds on the predictability in terms of the compress- 
ibility are derived which imply the intuitively appealing result 
that a sequence is perfectly predictable iff it is totally redun- 
dant and conversely, a sequence is totally unpredictable iff it 
is incompressible. Since the predictability is not uniquely 
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state sequence via the next-state function. Define the mini- 
mum fraction of prediction errors with respect to all FSM’s 

a , ( x r )  = m i n a ( g ;  x r ) ,  ( 5 )  

where G, is the set of all S2’ next-state functions corre- 

with S states as the S-state predictability of xr ,  
$ ( C Y )  = 

sG, 

determined by the compressibility, it is a distinct feature of 
the sequence that can be used to define a predictive com- 
plexity which is different from earlier definitions associated 
with the description length i.e., [ 1 11 - [ 131. Our definition of 
predictive complexity is also different from that of [14] and 
[15], which again is a description length complexity but 
defined in a predictive fashion. 

11. FINITE-STATE PREDICTABILITY 
Let x = x , ,  x 2 ,  * * be an infinite binary sequence. The 

prediction rule f(.) of an FS predictor is defined by 

i l + l  =f(s,), (1) 
‘ where it+ I E { 0, l }  is the predicted value for x,+  ,, and s, 

is the current state which takes on values in a finite set 
.Y = { 1,2,  * . e ,  S }  . We allow stochastic rules f, namely, 
selecting i,+ , randomly with respect to a conditional proba- 
bility distribution, given s,. The state sequence of the finite- 
state machine (FSM) is generated recursively according to 

S,+I = g ( x t 4 .  (2) 

The function g( . ,  * ) is called the next-statefunction of the 
FSM. Thus, an FS predictor is defined by a pair (f, g). 

Consider first a finite sequence xr = x,, . * e ,  x, and sup- 
pose that the initial state sI and the next-state function g (and 
hence the state sequence) are provided. In this case, as 
discussed in [2], the best prediction rule for the sequence xr 
is deterministic and given by 

1 

2 
O l f f < - - E ,  

1 

2E 2 2  2 
1 
- + E  < a! 5 1 ,  
2 1,  

0, 

1 1  ’[. - f ]  + - ,  - - E la! I - + E ,  

\ 

where N,,( s, x ) ,  s E Y ,  x E { 0, l }  is the joint count of s, = s 
and x , , ~  = x along the sequence x; .  Note that this optimal 
rule depends on the entire sequence xr and hence cannot be 
determined sequentially. 

and finally, define the FS predictability as 

a(.) = lim T , ( x )  = lim Iimsupa,(xr), (7) 
S-w ,+w s+ w 

where the limit as S + 03 always exists since the minimum 
fraction of errors, for each n and thus for its limit supre- 
mum, is monotonically nonincreasing with S .  The definitions 
(5)-(7) are analogous to these associated with the FS com- 
pressibility, [l], [2], and [16]. 

Observe that, by definition, a( x) is attained by a sequence 
of FSM’s that depends on the particular sequence x. In what 
follows, however, we will present sequential prediction 
schemes that are universal in the sense of being independent 
of x and yet asymptotically achieving a(x). 

111. S-STATE UNIVERSAL SEQUENTIAL PREDICTORS 

We begin with the case S = 1, i.e., single-state machines. 
From (3), the optimal single-state predictor employs counts 
NJO) and N,(l) of zeros and ones, respectively, along the 
entire sequence xr .  It constantly predicts “0” if N,(O) > 
Nn(l), and “ l ” ,  otherwise. The fraction of errors made by 
this scheme is T , ( X ~ )  = n-I min {N,(O), Nn(l)}. In this 
section, we first discuss how to achieve sequentially n,( x:)  
and later on extend the result to general S-state machines. 

Consider the following simple prediction procedure. At 
each time instant t ,  update the counts N,(O) and N,(1) of 
zeros and ones observed so far in x: .  Choose a small E > 0, 
and let $,(x) = ( N , ( x )  + l ) / ( t  + 2 ) ,  x = 0, 1, be the (bi- 
ased) current empirical probability of x .  Consider the sym- 
bol x with the larger count, i.e., $ , (x )  2 1/2. If in addition 
$ , (x )  2 1/2 + E, guess that the next outcome will be x .  If 
Fr(x )  5 1/2 + E ,  i.e., the counts are almost balanced, use a 
randomized rule for which the probability that the next 
outcome is x continuously decreases to 1/2, as fit( x) ap- 
proaches 1 /2. Specifically, the prediction rule is 

“ O ” ,  with probability 4(fit(0)), 
“ l ” ,  with probability r#~( S,(l)) = 1 - 4(@,(0)), 

Applying (3) to xr ,  the minimum fraction of prediction 
errors is i l + l  = 

1 s 
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Since 7il(x,") I 7il(2,") and since we have assumed that 
Nn(l) I N,(O), then N,(l)/n = ~~(2:) = n,<x,") and the 
theorem follows. 0 

Several remarks are in order. 

1) A natural choice of +( a )  could have been 1 /2 

0, C Y < ; ,  

+) = ;, CY = 1 2 '  (17) I 1 ,  C Y >  ;. 
However, this choice might be problematic for some 
sequences. For example, consider the sequence x: = 
0101 - - 01. While n,(01010 ) = 1/2, a predictor 
based on (17) makes errors 75% of the time on the 
average. The reason for this gap lies in the fact that 
$,(O), in this example, converges to 1/2 which is a 
discontinuity point of (17). Thus, continuity of + ( e )  is 
essential. Note that when E = E ,  vanishes, +(*) = c&(*) 

tends to a discontinuous function. Nevertheless, as dis- 
cussed in Appendix A, ?; , (x : )  can be universally 

Fig. 1. The function +(a). 

Theorem 1: For any sequence x: E (0, l}", and a fixed 
E > 0 in (9) 

+1(x;> 5 ndx,") + & + T l ( K  E ) ,  (10) 

where yl(n,  E )  = O((1og n) /n ) .  Furthermore, for E = E ,  = 

where &(n) = O(l/&). 

Proof: First observe that n,(x,") depends solely on 
the composition { N,(O), N,( 1)). We show in Appendix A 
that among all sequences of the same composition, and thus 
the same single-state predictability, the sequence for which 
the predictor (8) performs worst is 

2N,(1) Nnp) ; N"(1) 
2," = 0101 . . * 0 1  oo*..oo , (12) 

where it is assumed, without loss of generality, that NJO) 1 
Nn(l). Clearly, the fraction of errors made by the predictor 
of (8) over 2," provides a uniform upper bound for 7i,(x,"). 
In Appendix A, we also evaluate this average fraction of 
errors and find that for a fixed E,  

" E i1(2;) I - + ~ 

n 1 - 2E 
1 h ( n +  1)  1 1 + 2 ~  

8~ n n 1 - 2 ~ '  (13) +- + - . -  

while for E ,  = 1 / 2  

N"(1) Jn+l 1 
7i1(2?) I - + - + -. (14) n n 2n 

Denote 

A 1 h ( n +  I )  1 1 + 2 ~  
n 1 - 2 ~  

+ - . - -  -O(Y), Tl(n9 4 = 

(15) 

and 

bounded in t e k s  of n( x: )  provided that E ,  does not go 
to zero faster than O(1lt). ( 1 1 )  

2) A sequential universal prediction scheme, referred to as 
Blackwell's procedure, has already been proposed 
[3]-[5], and shown to achieve the single-state pre- 
dictability (or Bayes envelope in the terminology of 
[3]-[5]). Denote by ?iB(x:)  the fraction of errors made 
by this procedure over x i .  Blackwell's prediction rule 
at time t is determined by both the current fractions of 
zeros, $,(O), and the current expected fraction of er- 
rors, ?if"(x:). It satisfies (see [3] and [5]) 

V X ? E  {O, 1 ) " .  (18) 

The Blackwell predictor and its properties have been 
obtained using the theory developed in [6]-[9]. From 
Theorem 1 the performance of the predictor (8), in the 
case where E ,  = O ( l / f i ) ,  is equivalent to the perfor- 
mance of Blackwell's predictor-both converge to the 
predictability as O( 1 / &), although the upper bound 
(14) on the performance of the predictor (8) exhibits a 
better coefficient of the l /v% term. Thus, Theorem 1 
provides a less general derivation of the previous re- 
sults, valid in the prediction problem, at the benefit of a 
conceptually simpler approach. 

3) As observed in [4] and emphasized again here, a se- 
quential predictor must be randomized for its perfor- 
mance to approach optimality, universally for all se- 
quences. It was also proved there that the fastest rate to 
approach the predictability is O ( l / f i ) .  The bound in 
(14) which will be used throughout the rest of the 
paper, corresponds to this optimal rate and it is indeed 
better than (13). The result (13) is still interesting since 
it corresponds, for a fixed E ,  to a continuous function 
+ ( e )  and, in accordance with the more general results 
of [lo], it shows a faster convergence rate, Oflog n / n), 
but to a value slightly larger than the predictability. 
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4) It is also verified in Appendix A that the best sequence 
among all sequences of a given composition 1 s  
{NJO), NJl)}, in the sense of the smallest expected 
fraction of errors, has the form 

s}.  Applying Theorem 1 to each x" (s ) ,  we find that 

+ ( g ;  x,")  I - [min{N,(s,O), Nn(s ,  1))  
n s = l  

4- Nn ( 4 . 6 1 ( N n  ( 4 ) I  

By Jensen's inequality and the concavity of the square root 
function, The average number of errors made by the predictor of 

(8) over this sequence is at least Nn(l). Combining this 
fact with (14), we conclude that for every X :  1 A  

s = l  n 

Thus, although both a l ( x ; )  and 7 i l (x ; ) )  may not con- 
verge in general, their difference always converges to 
zero. 

5) While Theorem 1 expresses the performance of the 
single-state sequential predictor in terms of its ex- 
pected relative frequency of errors, it is easy to 
strengthen this theorem and to obtain an almost-sure 
result. Specifically, using the Borel-Cantelli lemma, 
one can prove that 

The same comment holds throughout this paper. 

We next describe a sequential predictor that achieves the 
performance a ( g ;  xy )  for a given next state function g .  
Such a predictor has already been described in [5]  for the 
case where g is Markovian, and it will be rederived here by 
a simple application of Theorem 1 and Jensen's inequality. It 
follows from the observation that for each state s the optimal 
prediction rule 2t+l = f(s) is fixed and so we can extend 
Theorem 1 straightforwardly by considering S sequential 
predictors of the form (8). 

Specifically, let N,(s, x ) ,  s E 9, x E (0 ,  l},  denote the 
joint count of s and x along the sequence xi  and the 
corresponding state sequence s: = s1 , - - - , s, generated by g.  
Let f i , (x l  s) = (N,(s, x )  + l)/(N,(s) + 2), x = 0, 1, 
where N,(s) = N,(s, 0) + N,(s, 1) is the number of occur- 
rences of the state s along s:. Consider the predictor, 

"0", 

"1 ", 
with probability 4(  f i , ( O  I s,)),  

with probability 4( fi,(l 1 s,)),  
Z,+l = f ( 4  = 

where the state sequence is generated by s,, = g(  x , ,  s,) for 
the given g EG, and 4 ( * )  is as in (9) with E ~ , ( ~ , ) .  Let 
+ ( g ;  x,")  be the fraction of errors of the predictor (22). 
Now, decompose the sequence x," into S subsequences 
x"(s)  of length N J s )  according to the time instants where 
each state s = 1, - e ,  S occurred, i.e., x"(s)  = { x , ,  t :  s, = 

(24) 

Thus, + ( g ;  xy )  approaches a ( g ;  x,") at least as fast as 
O ( S / n  m) = o(JS7n). 

Next, we show how to achieve sequentially the S-state 
predictability for a predefined S .  In general, the S-state 
predictability requires an optimization with respect to all 
g E G,. This optimization is bypassed, at a price of increased 
complexity as presented next. 

Let us first define a refinement of an FS machine. Given 
an S-state machine characterized by a next-state function g ,  
a refinement of g is a machine with s" > S states character- 
ized by g, such that at each time instant s, = h(S,) where s, 
and F, are the states at time t generated by g and g", 
respectively. Clearly, any two time instants corresponding to 
the same state s" in the refined machine g also correspond to 
the same state s in the machine g.  Thus, 

a ( g ; x , " )  =; min{N,(s,O),N,(s,l)} 
1 s  

s= 1 

1 s  

n s = l  S :  h ( ~ ) = ~  

1 s  

n 

L- min{Nn(a,O),Nn(S,l)} 

= -  min{Nn(s",O),Nn(s",l)} = a ( g ; x r ) ,  

(25) 

i.e., refinement improves performance. Furthermore, com- 
bining (23) and (25) it follows that the sequential scheme 
attaining a( g"; x,") also attains a( g ;  x ; ) ,  albeit at a slightly 
slower rate O( a) due to the effort to achieve the 
predictability of a machine with a larger number of states. 

Consider now a refinement g" of all M = S2' possible 
S-state machines. The state g, of g", at time t ,  is the vector 
( s ; , s ; ; - * , s y ) ,  where s f ,  i =  l ; . . , M ,  is the state at 
time I associated with the ith S-state machine gi .  Following 
the above discussion, it is clear that a(g; x: )  I a ( g ;  x r )  
for all g E G, and so a( g"; x,") I as( xy) .  Thus, the sequen- 
tial scheme (22) based on asymptotically attains as(x,") .  
This prohibitedly complex scheme achieves the predictability 
at a very slow rate, and it only achieves the S-state pre- 
dictability for a prescribed S .  This scheme only serves as a 
simple proof for the existence of universal schemes attaining 
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as(xy). Later on we present much more efficient schemes 
that achieve the performance of any FS predictor, without 
even requiring an advance specification of S.  

IV . MARKOV PREDICTORS 

An important subclass of FS predictors is the class of 
Markov predictors. A Markov predictor of order k is an FS 
predictor with 2k states where s, = (x,- * e ,  x r P k ) .  Simi- 
larly to (9, define the kth-order Markov predictability of 
the finite sequence xy as 

where Nn(xk, x )  = Nn(xk+l) ,  x = 0, 1 ,  is the number of 
times the symbol x follows the binary string xk in x,", and 
where for the initial Markov state we use the cyclic conven- 
tion x_;  = x,- ;, i = 1 ,  - e a ,  k .  (The choice of initial state 
does not affect the asymptotic value of pk(x;). The cyclic 
convention is used for reasons that will be clarified later on.) 

The asymptotic kth-order Markov predictability of the 
infinite sequence x is defined as 

p k (  x) = lim sup p k (  x : ) ,  (27) 
n+m 

and finally the Markov predictability of the sequence x is 
defined as 

p ( x )  = lim pk(x)  = lim limsupp,(x,"), (28) 

where the limit for k exists since a ( k  + 1)stader  Markov 
predictor is a refinement of a kth-order predictor and so 
p k (  x) monotonically decreases with k .  

We next prove that the Markov predictability and the FS 
predictability are equivalent. Thus, any scheme which attains 
p ( x )  also achieves r ( x ) .  Observe first, that since the class of 
FSM's contains the subclass of Markov machines it is obvi- 
ous that for any finite sequence x," and S = 2 k ,  

k-oo k + m  n+m 

pk(x:) ?TS(x;), (29) 

and therefore, p ( x )  1 ~ ( x ) .  The following theorem estab- 
lished a converse inequality. 

Theorem 2: For all integers k 1 0, S L 1 and for any 
finite sequence xy E (0, l } n ,  

Note that Theorem 2 holds for any arbitrary integers k and 
S ,  and it becomes meaningful when 2k + S in contrast to 
(29) in which S = 2 k .  

Proof: The idea in the proof is to consider a predictor 
which is a refinement of both the Markov machine and a 
given S-state machine. This refined predictor performs better 
than both machines. We will show, however, that when the 
Markov order k is large (relative to In S) the performance of 
this refined machine with 2k x S states is not much better 
than that of the Markov machine with 2k states. A-fortiori, 

the S-state machine cannot perform much better than the 
Markov machine. 

Let s, be the state at time t of the S-state machine g and 
consider a machine gj whose state at time t is S, = 
(st -j, x, - j ... x , - ~ ) .  Clearly, for every positive integer 
j ,  gj is a refinement of g. As a result r(gj; x,") I r(g; x,"), 
and so 

In the following lemma, we upper bound p j ( x : )  - 
r(g,; x ; )  in terms of the difference between the respective 
empirical entropies 

corresponding to the jth-order Markov machine, and 

(33) 

where $1 = 11;.-, S}  X (0, l}', corresponding to the re- 
fined machine gj, and here 9 denotes 2 random variable 
whose sample space is {l,..., S } .  

Lemma I :  For every integer j 2 0, and every next-state 
function g E Gs, S 2 1, 

P j ( G )  - r ( E j ;  x;) 

- [ E i ( X I X j )  In 2 - A ( x I x j , Y ) ] .  (34) 
2 

Lemma 1 is proved in Appendix B. 
Now, since pp(xy) I pj(x,") for all j I k .  

[rip I x') - ri(x I x', Y)]  

where the second inequality follows from (31), the third 
inequality follows from Lemma 1 and the last inequality 

' Throughout this paper, log x = log, x while In x = log, x .  
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follows from Jensen’s inequality and the concavity of the 
square root function. By the chain rule of conditional en- 
tropies, 

k 
fi( X 1 X j )  = fi( X k ,  X )  = f i ( X k + ’ ) ,  (36) 

j = O  

k 

j = O  
Ei (X1  X J ,  < Y )  = k ( X ,  X k l  Y )  = Ei(Xk+’I  Y ) .  

(37) 

The chain rule applies since the empirical counts are com- 
puted using the cyclic convention, resulting in a shift invari- 
ant empirical measure in the sense that the jth order marginal 
empirical measure derived from the kth order empirical 
measure ( j  I k )  is independent of the position of the j-tuple 
in the k-tuple. Now observe that 

fi( P+’) - fi( Xk+’  I Y )  = k( X k + ’ )  

- k ( X k + ’ ,  Y )  + k ( Y )  5 k(Y)  I log S .  (38) 

Combining (35) - (3S), 

Since g E G,  is arbitrary, the proof is complete. 0 
Having proved (30), one can take the limit supremum as 

n -+ 03, then the limit k -+ 03 and finally the limit S -+ 03 

and obtain p ( x )  5 n ( x ) ,  which together with the obvious 
relation p ( x )  2 n ( x )  leads to 

44 = 4.). (40) 

The fact that Markov machines perform asymptotically, as 
well as any FSM is not unique to the prediction problem. In 
particular, consider_ the data compression and the gambling 
problems where H (  X 1 X k )  and H(  X 1 Y )  quantify the 
performance of the kth order Markov machine and an FS 
machine with S states, respectively (see [2], [17], and [IS]). 
Clearly, 

k ( X ) X j ) - k ( X I Y )  

I Ei( X I X j )  - k( X I X j ,  Y ) .  (41) 

Using (41) for all j I k and following the same steps as in 
(35) - (38) ,  

log s 
k ( X I X k ) S k ( X I Y ) + -  k + l  ’ (42) 

This technique is further exercised in [lo] to obtain similar 
relations between the performances of Markov machines and 
FS machines for a broad class of sequential decision prob- 
lems. 

Next we demonstrate a sequential universal scheme that 
attains p ( x )  and thus, n ( x ) .  First observe that from the 
discussion in Section 111, for a fixed k ,  the kth order Markov 
predictability can be achieved asymptotically by the predictor 

(22) with s, = ( x , ~ ~ + ~ , - * * ,  x,), i.e., 

“o”,  with probability 4( B,(O 1 x,; * * , x , - k + l ) ) ,  
“1 ”, with probability $(a,( 1 1 x, , . . . , x t p k +  

(43 ) 

X,+I = 

where, e.g.: 

and + ( a )  is determined with E ~ , ( ~ , _ ~ + ,  ... x , ) .  

To attain p ( x ) ,  the order k must grow as more data is 
available. Otherwise, if the order is at most k*, the scheme 
may not outperform a Markov predictor of order k > k*. 
Increasing the number of states corresponding to increasing 
the number of separate counters for Nr(xk ,  x) .  There are 
two conflicting goals: On one hand, one wants to increase the 
order rapidly so that a high-order Markov predictability is 
reached as soon as possible. On the other hand, one has to 
increase the order slowly enough to assure that there are 
enough counts in each state for a reliable estimate of 
lj,( x I x,; . . , x t p k +  As will be seen, the order k must 
grow not faster than O(log t )  to satisfy both requirements. 

More precisely, denote by j ik (x: )  the expected fraction of 
errors of the predictor (43). Following (23) and (24), 

b k (  .:) pk( .:) + 6 2 k ( n ) ,  (44) 

where 6 2 k ( n )  = O( m). Suppose now that the ob- 
served data is divided into nonoverlapping segments, x = 
x(I), . . . and apply the kth order sequential predictor 
(43) to the kth segment, dk).  Choose a sequence ak such 
that ak -+ 03 monotonically as k + 03, and let the length of 
the kth segment, denoted n k ,  be at least ak * 2 k .  By (44) 
and (24), 

where t ( k )  = 0(1/&) and so l ( k )  -+ 0 as k-+ 03. 
Thus, in each segment the Markov predictability of the 
respective order is attained as k increases, in a rate that 
depends on the choice of c y k .  

Consider now a finite, arbitrarily long sequence xy, where 
n = 1;: I n k  and k ,  is the number of segments in x:. The 
average fraction of errors made by the above predictor 
denoted ji( x:), satisfies, 
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Now, for any fixed k' < k,, 

(47) 

where (47) holds since always P ~ ( x ( ~ ) )  5 1/2, since 
pi( x ' ~ ) )  I p,( x ( ~ ) )  when i > j ,  and since adding positive 
terms only increases the right-hand side (RHS) of (47). Now, 
the term C E L l ( n k  / n ) p k # ( d k ) )  is the fraction of errors made 
in predicting x ;  by a machine whose state is determined by 
the k'th Markov state and the current segment number. This 
is a refinement of the k'th-order Markov predictor. Thus, 

Also since the t ( k )  is monotonically decreasing and since 
the length of each segment is monotonically increasing we 
can write 

The LZ parsing algorithm parses an outcome sequence into 
distinct phrases such that each phrase is the shortest string 
which is not a previously parsed phrase. For example, the 
sequence 001010100*** is parsed into (0, 01, 010, 1 ,  
0100, - - - }. It is convenient to consider this procedure as a 
process of growing a tree, where each new phrase is repre- 
sented by a leaf in the tree. The initial tree for binary 
sequences consists of a root and two leaves, corresponding to 
the phrases ( 0 ,  l } ,  respectively. At each step, the current 
tree is used to create an additional phrase by following the 
path (from the root to a leaf) that corresponds to the incom- 
ing symbols. Once a leaf has been reached, the tree is 
extended at that point, making the leaf an internal node, and 
adding its two offsprings to the tree. The process of growing 
a binary tree for the above example is shown in Fig. 2. The 
set of phrases which correspond to the leaves of the tree is 
called a dictionary. Note that in the process of parsing the 
sequence, each outcome x ,  is associated with a node reached 
by the path corresponding to the string starting at the begin- 
ning of the phrase and ending at x , .  

Let K, be the number of leaves in the j th step (note that 
K j  = j + 1 for binary sequences) and assign a weight l /Kj 
to each leaf. This can be thought of as assigning a uniform 
probability mass function to the leaves. The weight of each 
internal node is the sum of weights of its two offsprings (see 
Fig. 2, for an example). Define the conditional probability 
@f'(x,,, I x : )  of a symbol x , + ~  given its past as the ratio 
between the weight of the node corresponding to x , + ~  (0 or 
1) that follows the current node x , ,  and the weight of the 
node associated with x , .  Note that if x,+ is the first symbol 
of a new phrase, the node associated with X ,  is the root. This 

where by the Cesaro theorem c(k,) + 0 as k, + 03. Thus, 
we can summarize the result of this section in the following 
theorem. 

Theorem 3: For any finite k ,  any finite S ,  and for any 
x ;  E ( 0 ,  l}" definition of a;"( x ,  + 1 x i )  as the conditional probability 

induced by the incremental parsing algorithm was originally 
G ( x ; )  p k ( x ; )  + c(n)  ? T S ( x ; )  + E*(.), (50) made in 1191 and r201. - -  

where both c (n )  = c(k,) + 0 and [*(n)  + 0 as n + a. In [2],' a:'( x,, I I x : )  has been used for universal gam- 

Proof: The first inequality is achieved by combining 
(47)-(49), taking the limit supremum, and observing that 
k, + 03 as n -+ 03. For the second inequality we use (30) 
where we define t * ( n )  = f(k,) + J(ln S ) / 2 ( k ,  + 1 )  . 0 

Note that this theorem implies that for any finite individual 
sequence 

;(x) 5 limsupG(x;) = p ( x )  = r ( x ) .  

In summary, then, we have shown that a sequential Markov 
predictor whose order is incremented from k to k + 1 after 
observing at least nk = (Yk 2k data Samples (i.e., a predic- 
tor whose order grows as O(1og t)) achieves, within t *( n), 
the performance of any finite-state predictor. 

n-m 

V. PREDICTION USING INCREMENTAL PARSING 

In this section, we present a sequential predictor based on 
the incremental parsing algorithm, suggested by Lempel and 
Ziv [l], and show that it attains the FS predictability. The 
underlying idea is that the incremental parsing algorithm 
induces another technique for gradually changing the Markov 
order with time at an appropriate rate. 

bling where it was suggested to wager on "0" a fraction 
a,""(O 1 x i )  of the capital at time t. Here, we suggest this 
estimator for sequential prediction, according to 

"0", 

"l", 
with probability 41( a,"'(O I x : ) ) ,  

with probability 4,( a,"'( 1 I x : ) )  , (51) i t + l  = 

where 4, ( . )  is as in (9) with a time-varying parameter E, to 
be defined later. This predictor will henceforth be referred to 
as the incremental parsing (IP) predictor. We prove below 
that it attains a(x). For this purpose it is useful to recall the 
counting interpretation of a,"'(. I ). 

In this interpretation, the outcomes are sorted into bins (or 
"contexts" in the terminology of [19], [20]). Each outcome 
x ,  is classified into a bin determined by the string v starting 
at the beginning of the current phrase and ending at x,-  
The string v will be referred to as the bin label. The first bin, 
labeled by the empty string, contains all the bits that appear 
at the beginning of a phrase. In the previous example, 
{ 0,01,010, 1,0100, - }, the bits O0010 * at locations 
1 , 2 , 4 , 7 , 8 ,  * * * are the initial bits of parsed strings and 
belong to the first bin, the bits 111  - at locations 
3,5,9, - * belong to the bin labeled "0", and so on. 



FEDER et al.: UNIVERSAL PREDICTION OF INDIVIDUAL SEQUENCES 1265 

Theorem 4: For every sequence x ;  and any integer After '0' After "01" 

2/3 
"0" Initial Dictionary- k 2 0, Y1l3 

."(xr) 5 p&:) + v ( n ,  k )  (52) 

Yll4 where for a fixed k ,  v (n ,  k )  = O(l/=). 

Proof: Following the counting interpretation, the IP 
predictor is a set of sequential predictors each operating on a 
separate bin. Applying Theorem 1 to each one of the c bins 
and averaging over the bins similarly to (23), we get 

1/3 

After"010" After "I" y 115 

2 / 5 A / 5  Y'l6 9 V 6  
4/6 213 2/6 I C  /4'%437 w l / 5 7  \?-"3,6/ q,, TIp( x;) 4 - 1 (min { N ~ ( o ) ,  N ~ ( I ) }  + N! * 6,( N!)) n j = 1  '\ y l / 5  , -1l6 

Final Dictionary :After "0100" 

I 

Fig. 2. Dictionary trees and probability estimate induced by the LZ 
scheme. 

The procedure begins with the single bin labeled by the 
empty string. With each new phrase a new bin, labeled by 
that phrase, is added. Thus, we observe that the sequence xy 
generates c + 1 bins, where c = c ( x ; )  is the number of 
parsed strings in x: .  Actually we observe that the sequence 
is divided into at most c bins since at least the last bin, 
labeled by the string just parsed, will be empty. 

A sequential probability estimate is defined for each bin as 
follows. Let IV'( x ) ,  j = 1, * a ,  c, denote the number of 
symbols equal to x in the j t h  bin at time t .  The probability 
estimate of the next bit x entering the jth bin is 

N / ( x )  + 1 
x = O , l ,  - - 

N/(x) + 1 
"(0) +"(I) + 2 N: + 2 ' 

where N/ = N/(O) + N/(l). It turns out, as was previously 
observed in [19], that this probability estimate, at the current 
bin, equals to p,""(x 1 x : ) .  In the previous example, the 
sequence of bits in the first bin is 00010 ; thus, the 
respective estimate of the probability that the next bit classi- 
fied to this bin will be "0" are 1/2, 2/3, 3/4, 4/5, 4/6, . . . 
which coincide with the corresponding estimates, indicated in 
Fig. 2 ,  that the bits in locations 1, 2, 4, 7, 8, - . * will be 
"0". 

Following this interpretation, we set E [  = 1/(2 JN:+2) 
for determining the predictor (51) used in guessing the next 
bit to enter the j th bin. Having defined the IP predictor, let 
a"(x;) denote its expected fraction of errors. We are now 
ready to present Theorem 4 which upper bounds ~ " ( x ; ) .  

1 c  

n j = 1  
5 - min { Ni(O), Ni(1)) + 6,( n )  , (53) 

where the last inequality follows from the convexity of the 
logarithm and Jensen's inequality, as in (24). Now, for any 
k 2 0, we can write 

+ C min { N ~ ( o ) ,  ~ j (  I )} ,  (54) 

where J, is the set of bins labeled by strings shorter than k, 
and J2 is the set of bins labeled by strings of length k or 
longer. Note that the first k bits in each phrase are allocated 
to bins in J , .  Thus, at most k c bits are allocated to bins in 
J ,  and so the first term in the RHS of (54) is upper bounded 
by ( k  - c)/2.  As for the second term in the RHS of (54), 
observe that the kth-order Markov predictor divides the data 
into bins labeled by the k previous bits. Since a bin in J2 is 
labeled by at least k previous bits, the IP predictor serves as 
a refinement to the kth-order Markov predictor in J2 .  Thus, 
the second term is smaller than the number of errors made by 
the kth-order Markov predictor over the bits in J 2 ,  which in 
turn is smaller than n * p k ( x y ) ,  the number of errors made 
by the Markov predictor over the entire sequence. Combin- 
ing these observations we get, 

c min { N , ~ ( o ) ,  N:(I)} 5 - kc + n * p k (  x y ) .  (55) 

j =  1 2 

Substituting (55) into (53), 

Since 6,(n) = O( m) and recalling that c / n  I 
0 O(l/(log n) )  (see [21]) the theorem follows. 

We have just shown that the IP predictor asymptotically 
outperforms a Markov predictor of any finite order and 
hence, by Theorem 2, it also attains the FS predictability. 
Note, however, that the rate at which the predictability is 
attained is @I/*) which is slower than the rate 
O( d m n - )  of the predictor (43). The reason is that the IP 
predictor has effectively c = n /log n states and so its equiv- 
alent Markov order is log c = log ( n  /log n) .  
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A result concerning the compression performance of Lem- 
pel-Ziv algorithm, known as Ziv's inequality and analogous 
to the theorem above, states that the compression ratio of the 
LZ algorithm is upper bounded by the kth-order empirical 
entropy plus an O((log1og n)/(log n)) term. This result has 
been originally shown in [22] (see also [23, ch. 121). It can 
be proved, more directly, by a technique similar to the 
above, utilizing (42) and the 0((2k/(n) log ( n  /2k)) conver- 
gence rate observed in universal coding schemes for Markov 
sources, [20], [24]-[26], and the fact that the LZ algorithm 
has an equivalent order of log c = log ( n  /log n). 

For each individual sequence, the compression ratio of the 
LZ algorithm is determined uniquely by the number of 
parsed strings c ( x f ) ,  which is a relatively easily computable 
quantity. It is well known [l] that this compression ratio, 
n- 'c (x f )  log c(xy) ,  is a good estimator for the compress- 
ibility of the sequence (and the entropy of a stationary 
ergodic source). As will be evident from the discussion in the 
next section, the predictability of a sequence cannot be 
uniquely determined by its compressibility and hence neither 
by c( xy) .  It is thus an interesting open problem to find out an 
easily calculable estimator for the predictability. 

Finally, the IP predictor proposed and analyzed here has 
been suggested independently in [27] as an algorithm for 
page prefetching into a cache memory. For this purpose, the 
algorithm in [27] was suggested and analyzed in a more 
general setting of nonbinary data, and in the case where one 
may predict that the next outcome lie in a set of possible 
values (corresponding to a cache size larger than 1). How- 
ever, unlike our analysis which holds for any individual 
sequence, the analysis in [27] was performed under the 
assumption that the data is generated by a finite state proba- 
bilistic source. 

VI. PREDICTABILITY AND COMPRESSIBILITY 
Intuitively, predictability is related to compressibility in 

the sense that sequences which are easy to compress seem to 
be also easy to predict and conversely, incompressible se- 
quences are hard to predict. In this section we try to consoli- 
date this intuition. 

The definition of FS predictability is analogous to the 
definition of the FS compressibility p ( x ) ,  see [l], [2], and 
[ 161. Specifically, the FS compressibility (or FS complexity, 
FS empirical entropy) was defined in [2] as 

p ( x )  9 lim limsup minp(g ;  x ? ) ,  (57) 
S+m n+03 geCs 

where 

and where h(a )  = -a log a - (1 - a) log (1  - a) is the 
binary entropy function. This quantity represents the optimal 
data compression performance of any FS machine where the 
integer codeword length constraint is relaxed (this noninteger 
codelength can be nearly obtained using, e.g., arithmetic 
coding [28]). Also, utilizing the relation between compres- 
sion and gambling, [17], [18], the quantity 1 - p ( x )  is the 

optimal capital growth rate in sequential gambling over the 
outcome of the sequence using any FS machine. 

As was observed in [2], by the concavity of h ( . )  and 
Jensen's inequality, 

where 2 = arg min N,(s, x ) .  By minimizing over g E G,, 
taking the limit supremum as n -+ 00, and the limit S -+ 00 

for both sides of (59) and by the monotonicity of h( - )  in the 
domain [0, 1 /2], 

.(x) 2 h - I ( & ) ) .  (60) 
An upper bound on the predictability in terms of the 

compressibility can be derived as well. Since h( a) 2 2 a for 
0 I a I 1/2, 

which leads to 

+ p ( x )  1 7 r ( x ) .  (62) 
Both the upper bound and the lower bound as well as any 

point in the region in between, can be obtained by some 
sequence. Thus, the compressibility of the sequence does not 
determine uniquely its predictability. The achievable region 
in the p - 7r plane is illustrated in Fig. 3. 

The lower bound (60) is achieved whenever @,(a I s) = 
N(s ,  2) /N, (s )  are equal for all s. This is the case where the 
FS compressibility of the sequence is equal to the zero-order 
empirical entropy of the prediction error sequence (i.e., the 
prediction error sequence is "memoryless"). Only in this 
case, a predictive encoder based on the optimal FS predictor 
will perform as well as the optimal FS encoder. 

The upper bound (62) is achieved when at some states 
@,( 2 I s) = 0 and in the remaining states an( 2 1 s) = 1/2, 
i.e., in a case where the sequence can be decomposed by an 
FSM into perfectly predictable and totally unpredictable sub- 
sequences. 

The upper and lower bounds coincide at ( p  = 0, T = 0) 
and ( p = 1 ,  ?r = 1 '2) implying that a sequence is perfectly 
predictable fl it Is totally redundant, and conversely, a 
sequence is totally unpredictable 18 it is incompressible. 

A new complexity measure may be defined based on the 
notion of predictability. Analogously to the complexity defi- 
nitions of Solomonoff, [l l] ,  Kolmogorov, [12] and Chaitin, 
[ 131, we may define the predictive complexity as the mini- 
mum fraction of errors made by a universal Turing machine 
in sequentially predicting the future of the sequence. A point 
to observe is that while the complexities above are related to 
the description length (or program length) and hence, to each 
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other, the predictive complexity is a distinct measure. From 
problem. These issues as well as other topics mentioned 
above are currently under investigation. 
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Fig. 3. Compressibility and predictability -achievable region. 

[15] to the approach of this paper, regarding the prediction 
the discussion above, sequences that have the same Kol- 
mogorov’s complexity (description length) may have a dif- 
ferent predictive complexity, and vice-versa. 

A predictability definition can be made for probabilistic 
sources as well. The predictability of a binary random vari- 
able X will be 

n ( X )  = E { / ( P r ( X ) ) }  = m i n { p , l  - p } ,  (63) 

where p is the probability that X = 0 and / ( a )  = 1 for 
a c 1/2, /(CY) = 1/2 for CY = 1/2, and / ( a )  = 0 for CY > 
1 /2. The conditional predictability of the random variable 
X ,  given X ,  is defined as 

4x1 I X2)  = E{@r(X,  I a) 

The Worst Sequence of a Given Composition: Assume, 
without loss of generality, that N,(O) 2 N,(1) and construct 
a state diagram where the state at time t corresponds to the 
absolute difference C, = I N,(O) - N,(1) 1 .  Clearly, CO = 0 
and C, = N,(O) - N,(l). The final state C,  is the same for 
all sequences of the same composition and hence, the same 
single-state predictability n ,( x y ) .  However, the exact trellis 
of { C,} depends on the particular sequence. 

Define an upward loop in the trellis as a pattern (C, = 
k ,  C,+l = k + 1, C,+, = k )  for some integer k > 0, and 
similarly a downward loop as (C, = k ,  C,+, = k - 
1, C,+, = k ) .  Replacing an upward loop by a downward 
loop corresponds to changing “01” to “10” or vice-versa, 
which does not affect the composition of the sequence, but as 
we show next, it can only increase the loss or the expected 
number of errors. 

Assume first that N,(O) > N,(l). The loss incurred along 
the upward loop at time t is 

dictability i.e., n( XI) 1 n( X ,  I X , )  L n(X, I X , ,  X , )  ktc. 
These definitions can be generalized to random vectors, and 
stochastic processes. For example, the predictability of a 

where I ( . )  = 1 - $ ( e ) .  The loss incurred along the down- 
ward loop is 

stationary ergodic process X is defined as 

.(X) = lim T(x,+, I X , ; . . ,  XI) 
n-a, 

We want to show that CY I 0. We may write 
= n ( X , I X _ , ; * * ) .  (65) 

It will be interesting to further explore the predictability 
measure and its properties. For example, to establish the 
predictability as the minimum frequency of errors that can be 
made by any sequential predictor over the outcome of a 
general (ergodic) source, and convergence of the perfor- 
mance of prediction schemes to the source’s predictability. 
Another problem of interest is the derivation of a tight lower 
bound on the rate at which the predictability can be ap- 
proached asymptotically by a universal predictor for a para- 
metric class of sources. This problem is motivated by an 
analogous existing result in data compression [ 141, which 
states that no lossless code has a compression ratio that 
approaches the entropy faster than (S/2n) log n, where S is 
the number of parameters, except for a small subset of the 
sources corresponding to a small subset of the parameter 
space. A solution to this problem might follow from [15]. It 
is interesting, in general, to relate the results and approach of 

N,(O) + 1 

a - P = $ , + I  

N,(O) + 1 +$,,,i t + 3  ) - z i t (  t + 2  ) ’  

where $,(a) denotes the function $ ( e )  of (9) with a possibly 
time varying E = E,.  Observe that (N,(O) + 2)/(t + 3) > 
(N,(O) + l ) / ( t  + 2) > (N,(O) + l ) / ( t  + 3) 1 1/2 and con- 
sider the following two possible cases. In the first case 
(N,(O) + l ) / ( t  + 2) > 1/2 + E, and when E ,  is nonincreas- 
ing we have (N,(O) + 2)/(t + 3) > 1/2 + E , + ,  and so 

in which case CY - = $,+l((N,(0) + l ) / ( t  + 3)) - 1 I 0. 
In the second case, (N,(O) + l ) / ( t  + 2) I 1/2 + E ,  and we 
can replace $t((e(0) + l)/(t + 2)) by 1/2~,[(N,(0) + 
l ) / ( t  + 2) - 1/21 + 1/2. Also, note that a continuation of 
the sloping part of $ ( e )  to the right serves as an upper bound 

&((N,(O) + l> / ( t  + 2)) = 4,+1((4(0) + 2)/(t + 3)) = 1, 
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to this function and so, e.g., C$~+~((N,(O) + 2)/(t + 3)) I 
1/(2~,+~)[(N,(0)  + 2)/(t + 3) - 1/21 + 1/2, and we can 
write in this case: 

(A.3) 
- -- A N‘(l) + A  + B .  

2 
t + 3  

Consider first the case where E is fixed. To overbound 
A = Cf$)I(k/(2k + l)), we observe that l (k/(2k + 1)) 

1). Thus, 

C Y - 0 5 -  

1/2 + (1/2 E )  * (1/2 - k / ( 2 k  + 1)) = 1/2 + (1/4 E) * 1/(2k 

q ( 0 )  - t 
2Et+& + 3) 

N , ( O )  - t 
2 4 t  + 2) . 

- - - 

Thus, as long as ~ , ( t  + 2) I ~ , + ~ ( t  + 3), we have again 
a I 0. In other words, whenever both is nonincreasing 
and the function f ( t )  = ~ , ( t  + 2) is nondecreasing, (e.g., a 
constant E or an E, that monotonically goes to zero, say, as 
C /  m, but not faster than C/( t + 2)), the loss incurred 
in the upward loop is smaller than that of the downward loop. 

When N,(1) > N,(O) then a is the loss incurred in the 
downward loop and 0 is the loss incurred in the upward 
loop. Using similar observations we can show that /3 I CY 

under the similar condition on E , .  Again, the loss incurred 
over the downward loop can only be greater than the loss 
incurred in the upward loop. We note that the proof above 
can be generalized to any nondecreasing 4(a), concave for 
a 1 1/2, such that +(CY) = 1 - 4(1 - a). 

Now given any sequence xf and its trellis, one can replace 
every upward loop by a downward loop and thereby increase 
the average loss at each step. After a finite number of such 
steps one reaches a sequence such that the first N,( 1) pairs of 
bits ( x , , - , ,  x t t )  are all either “01” or “lo”, and the 
remaining NJO) - Nn(l) bits are all “0”. For such a se- 
quence, all upward loops correspond to k = 0 and hence 
cannot be replaced by downward loops. Thus, every se- 
quence of this structure, in particular the sequence (12), 
incurs the same maximal loss. Note that by replacing any 
downward loop with an upward loop one ends up with a 
sequence of the form (19) which has, as a result, the smallest 
loss among all the sequences of the given composition. 

Proof of (13): Since the sequence of (12), denoted i?:, 
is the worst sequence for a given value of T , ( X , ” >  then 
?i l (x: )  I ?;, ( i?; ) .  The average loss over 2: is 

k 

k= 1 

where in the last inequality we used the fact that 2Nn(1) I n. 
As for B = Cf:((p)-Nn(l)l((Nn(l) + k)/(2Nn(1) + k + l)), 
some of the terms are zero and the arguments of I( e )  for the 
nonzero terms must satisfy (N,(l) + k)/(2Nn(1) + k + 1) 
I 1/2 + E and hence, for these terms 

4 ~ N , ( 1 )  1 + 2~ A 
kI- + - = K .  

1 - 2 E  1 - 2 E  

Also, the nonzero terms are smaller than 1/2 since the 
argument of I ( . )  is greater than 1/2. Thus, 

K 1 2ENn(1) + 1 + 2E B s C - = -  
k = l  2 1 -2E  2(1 -2E)  

E 1 +2E  
- < - *  n +  . (AS)  

1 - 2E 2(1 - 2 4  

Combining (A.3), (A.4), and (AS), we get 

1 1 + 2E 
+ - h ( n  8~ + 1) + 2(1 - 2 4  ’ ( A 4  

which completes the proof of (13). 

Proof of (14): When choosing = 1/2 d(t + 2) we 
have I ,(k/(2k + 1)) 5 1/2 + 1/(2E*k-l) (1/2 - k/(2k 
+ 1)) = 1/2 + 1/2 - l / m ,  and so 

N’(1) 1 Nn(l) 1 
A I - + Z C  

2 k = l  

Nn(l) + f J,W) du 

2 2 2 ’  

V 5 z - i  
I- 

2 

N’(1) Jn+l 1 
(A.7) I -  +-- -  
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Also in this case, the arguments of I (  e )  for the nonzero terms 
in B must satisfy 

N,(1) + k 1 1 
I-+ , k r O ,  

which implies that k2 - 3k I 2N,(1), k I 0. Straightfor- 
ward calculations show that the number of these nonzero 
components, denoted K ,  which is the maximal k satisfying 
the previous conditions, is upper bounded by 

2N,(1) + k + 1 2 2J2Nn(1) + k + 1 

K I J(2Nn(1) + z )  + I J(2Nn(1) + I )  + 2,  

where the second inequality holds since N,(1) I 0. Now 
each of these K nonzero terms is smaller than 1/2 and so 

K 

B r  1 = f J (2Nn(1)  + 1) + 1 I fm + 1 .  
k =  1 

( A 4  

Combining (A.3) ,  (A.7) ,  and (A.8) ,  we get 

iqn;)  I - Nn(l) A + B I N,(1) + + i ,  (A.9) 2 
which completes the proof of (14). 

Note that slightly different expressions for the loss may be 
obtained by choosing = c0 fi / Jt+;? with arbitrary eo; 
however, in all these cases the excess loss beyond ?r,(xy) 
decays like O ( l / f i ) ,  and our choice of eo = 1/2 fi leads 
to the tightest bound on the coefficient of l / f i  that is 

0 attained in the previous technique. 

APPENDIX B 

Proof of Lemma I :  The proof is based on Pinsker’s 
inequality (see, e.g., [29, ch. 3, problem 171) asserting that 
f o r e v e r y o r p r  1andO1q1  1, 

2 

In 2 2 -(P - 4)*. 

Since min { p ,  1 - p}  - min { q, 1 - q }  I I p - q 1 ,  
P 1 - P  

4 1 - q  
p l o g -  + (1 -p) log-  

2 

In 2 
2 - ( m i n i p ,  1 - p >  - min{q, 1 - q} ) ’ .  (B.I)  

Let a,( e )  denote an empirical measure based on x: where 

2 

where the first inequality follows from (B.l) and the second 
follows from the convexity of the square function and Jensen’s 
inequality. Noticing that 

and 

completes the proof of the lemma. 0 
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